Mass optimization of engineering structures applying genetic algorithms

Valentina Gerfolveden, Darius Mačiūnas, Dmitrij Šešok, Saulius Valentinavičius, Elena Glėbienė


The paper proposes a technology for mass optimization of two-dimensional body applying genetic algorithms. Main attention is focused on geometry of 2D body, i. e. search for optimal coordinates of body points. Direct analysis of 2D body – von Mises stress determination – is performed using original program based on finite element method. The set of design parameters contains the coordinates of body points in 2D space. The results of numerical experiments proved the proposed technology to be efficient tool for solution of 2D body mass optimization problem.

DOI: 10.15181/csat.v2i2.892


Barauskas, R., Belevičius, R., Kačianauskas, R. (2004). Baigtinių elementų metodo pagrindai. Vilnius: Technika.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Learning. New York: Addison-Wesley.

Hajela, P. (1996). “Stochastic search in structural optimization: genetic algorithms and simulated annealing”, Structural Optimization: Status and Promise, vol. 150: 611–637.

Miller, B. L., Goldberg, D. E. (1996). “Genetic algorithms, selection schemes, and the varying effects of noise,” Evolutionary Computation, 4(2): 113–131.

Sivaraj, R., Ravichandran, T. (2011). “A review of selection methods in genetic algorithm,” International Journal of Engineering Science and Technology, 3(5): 3792–3797.

Srinivas, M., Patnaik, L. M. (1994) “Adaptive probabilities of crossover and mutation in genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, 24(4): 656–667.

Yanaponsel. (n.d.). Informasi Terkini Dunia Teknologi Dan IT. Retrieved from

Weise, T. (2009). Global Optimization Algorithms – Theory and Application, University of Kassel, Distributed Systems Group: el. išteklius.

Zienkiewicz, O. C., Taylor, R. L. (2005). The Finite Element Method for Solid and Structural Mechanics, 6th ed., London: Elsevier Butterworth-Heinemann.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

eISSN: 2029-9966