Modeling amperometric biosensors based on allosteric enzymes

Liutauras Ričkus


Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.


Scheller, F., Schubert F. (1992). Biosensors. Amsterdam: Elsevier Science Publishers B.V.

Baronas, R., Ivanauskas, F., Kulys, J. (2010). Mathematical Modelingo of Biosensors. Dordrecht: Springer.

Britz D. (2010). Digital Simulation in Electrochemistry, 3rd Editon. Berlin: Springer BerlinHeidelberg New York.

Varies, S. Allosteric enzymes.

Duane, W. S. (2010). Enzyme Kinetics.

Tuner, A. P. F., Karube, I., Wilson, G. S. (1987). Biosensors: Fundamentals and Applications. Oxford: Oxford University Press.

Kuhert, N., Daiposh, F., Jaiswal, R, Matei, M., Deshpande, S., Golon, A., Nous, H., Karaköse, H., Hourani N. (2011). „Hill coefficients of dietary polyphenolic enzyme inhibitiors: can beneficial health effects of dietary polyphenols be explained by allosteric enzyme denaturing?“ Chem Biol 4: 109-116.

Šimelevičius, D., Baronas, R. (2011). „Amperometrinių biojutiklių su sinerginių substratų stiprinimu kompiuterinis modeliavimas“ Informacijos mokslai 56: 174-181.

Samarskii, A. A. (2001). The Theory of Difference Schemes. New York: Marcel Dekker.

Kernevez, J.P. (1980). Enzyme Mathematics:Studies in Mathematics and its Applications. Amsterdam:North-Holland Publishing Company.

Schulmeister, T. (1990). „Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes“ Selective Electrode Reviews 12: 203–260.

Aris, R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: The theory of the steady state. Clarendon: Oxford University Press.

Traut, T. (2008). Allosteric Regulatory Enzyme. New York: Springer Science+Business Media.

Yang, C. R., Shapiro, B. E., Mjolsness, E. D.; Hatfield, G. W. (2005). „An enzyme mechanism language for the mathematical modeling of metabolic pathways“ Bioinformatics 21: 774-780.

Corcuera, J. I. R. D., Cavalieri, R. P., Powers, J. R., Tang, J. (2004). Amperometric enzime biosensor optimization using mathematical modeling. In Proceedings of the 2004 ASAE/Csae Annual International Meeting.

Ferreira, L. S., Souza, M. B. D., Trierweiler, J. O., Broxtermann, O., Folly, R. O. M., Hitzmann, B. (2003). „Aspects concerning the use of biosensors for process control: experimental and simulation investigations“ Computers and Chemical Engineering, Volume 27, Issuse 8–9, 1165–1173.

Mell, L.D., Maloy, J.T. (1975). „A model forthe amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system“ Analytical Chemistry Volume 47 Isuse 2, 299–307.

Kernevez, J. P. (1980). Enzyme Mathematics: Studies in Mathematics and its Applications. Amsterdam: North-Holland Publishing Company.

Kulys, J. (1981). „The development of new analytical systems based on biocatalysts“ Analytical Letters, Volume 14, Issuse. 6, 377–397.

Bartlett, P. N., Whitaker, R. G. (1987). Electrochemical immobilisation of enzymes. Part I: Theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Volume 224, Issuse 1–2, 27–35.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

eISSN: 2029-9966

Creative Commons License